关于我们
ABOUT US
新闻中心
NEWS
金相显微镜:光刻制程里的“火眼金睛”2025-06-23
一、光刻胶检测:检查“印刷模板”质量 光刻胶就像芯片制造中的“印刷模板”,光刻工艺会把电路图案“印”在上面。金相显微镜就像一台“高清检测仪”,专门检查这张“模板”: • 精度检测:芯片上的电路线条比头发丝细上百倍,金相显微镜能放大观察线条是否达到设计要求,帮工程师调整曝光时间、胶层厚度等参数,确保图案精准。 • 瑕疵检查:光刻胶表面不能有小坑、裂痕或毛刺,一旦出现,就会影响后续工艺。金相显微镜能快速发现这些问题,避免造成更大损失。 二、晶圆图形检验:监督“芯片画布”的绘制 晶圆是制造芯片的“画布”,光刻要在上面绘制精细的电路图案。金相显微镜则充当“监工”角色: • 图案校准:通过显微镜观察,对比实际图案和设计图纸,检查电路有没有画歪、画缺,保证每一步光刻都符合标准。 • 多工序监控:光刻后还要经过刻蚀、镀膜等多道工序。金相显微镜会持续跟踪观察,确保每一步操作都不会损坏已绘制好的电路图案。 三、缺陷检测:排除“隐形杀手” 在芯片制造过程中,灰尘、划痕等微小缺陷就像“隐形杀手”,可能导致芯片报废。金相显微镜就是“排雷专家”: • 表面排查:光刻完成后,显微镜能快速发现晶圆表面的灰尘、划痕等缺陷,及时清理或修复,提高芯片良品率。 • 失效分析:当芯片出现故障时,金相显微镜可以深入分析光刻图案,查找是否存在线条断裂、短路等问题,帮助工程师找到故障根源。 四、材料研究:优化“芯片原材料” 晶圆材料的质量直接影响光刻效果。金相显微镜就像“材料质检员”: • 材料评估:通过观察晶圆材料的晶体结构、杂质含量,判断材料是否适合光刻工艺,为工程师选择更优质的原材料提供依据。 • 工艺验证:在研发新的光刻技术或材料时,金相显微镜可以实时观察光刻效果,帮助工程师评估新工艺的可行性,推动芯片制造技术不断进步。 金相显微镜在光刻制程中扮演着至关重要的角色,从光刻胶到晶圆,从表面缺陷到材料特性,它全方位把控着芯片制造的每一个细节,是芯片高质量生产不可或缺的“得力助手”。 企业简介 苏州锐纳微光学有限公司专注于显微自动化及智能精密光学检测领域。 公司以显微光学成像及图像处理算法为核心技术,坚持自主研发,整合光学、机械、电子、软件、算法等多领域优势,形成一体化能力,为用户提供智能化检测解决方案。 公司专注服务于工业领域客户,以市场需求为导向,助力客户升级传统检测装备,根据客户实际情况提供合适且实用的产品以及周到的服务。 未来,公司将依托在显微镜自动化领域多年的积累,逐步发展成为半导体和新能源行业检测设备为核心的综合服务提供商。 企业使命 致力于《以服务为核心,为客户提供解决方案》的经营理念,成功为众多企业、高校科研等提供各种专业服务的光学系统解决方案。
白光干涉显微镜的原理是什么?有哪些应用?2025-01-03
白光干涉显微镜目前在3D检测领域是精度最高的测量仪器之一,在同等系统放大倍率下检测精度和重复精度都高于共聚焦显微镜和聚焦成像显微镜,在一些纳米级和亚纳米级的超精密加工领域,除了白光干涉仪,其它的仪器无法达到其加工精度要求。      白光干涉显微镜的原理:      光源发出的光经过扩束准直后经分光棱镜后分成两束,一束经被测表面反射回来,另外一束光经参考镜反射,两束反射光最终汇聚并发生干涉,显微镜将被测表面的形貌特征转化为干涉条纹信号,通过测量干涉条纹的变化来测量表面三维形貌。白光干涉三维形貌仪是利用光学干涉原理研制开发的超精密表面轮廓测量仪器。照明光束经半反半透分光镜分成两束光,分别投射到样品表面和参考镜表面。      从两个表面反射的两束光再次通过分光镜后合成一束光,并由成像系统在CCD相机感光面形成两个叠加的像。由于两束光相互干涉,在CCD相机感光面会观察到明暗相间的干涉条纹。干涉条纹的亮度取决于两束光的光程差,根据白光干涉条纹明暗度以及干涉条纹出现的位置解析出被测样品的相对高度。      白光干涉显微镜的应用:      用来测量三维微观形貌的。白光干涉仪可广泛应用于半导体制造及封装工艺检测、3C电子玻璃屏及其精密配件、光学加工、微纳材料及制造、汽车零部件、MEMS器件等超精密加工行业及航空航天、国防军工、科研院所等领域中。可测各类从超光滑到粗糙、低反射率到高反射率的物体表面,从纳米到微米级别工件的粗糙度、平整度、微观几何轮廓、曲率等。
查看更多
技术文章
ARTICLES
04/15
奥林巴斯红外显微镜在材料科学中的应用有哪些?
奥林巴斯红外显微镜是一种能够对样品进行微观形貌观察和化学成分分析的重要实验设备。在材料科学领域,它被广泛应用于各种研究和测试工作中,为科研人员提供了便利和准确的实验数据。以下是它在材料科学中的一些主要应用:    1、材料成分分析:奥林巴斯红外显微镜 可以对材料的化学组成进行精确分析。通过对比不同物质的红外光谱特征,可以准确地识别出材料中的各种成分,包括有机物、无机物以及各种复合材料。这对于新材料的研发和改进具有重要的指导意义。     2、材料结构研究:除了成分分析外,还可以用于研究材料的内部结构。例如,通过显微红外技术,可以直接观察到聚合物内部的相分离现象、晶体的生长过程等微观结构的变化。这对于理解材料的性能和改进其性能具有重要的帮助。    3、材料性能测试:还可以用于测试材料的各种性能,如热稳定性、耐腐蚀性、机械强度等。通过对材料在不同环境条件下的红外光谱进行分析,可以了解到材料的性能变化,从而优化材料的设计和制备工艺。    4、故障分析与质量控制:在工业生产中,可以用于对产品进行质量检测和故障分析。例如,通过对比正常产品和异常产品的红外光谱,可以快速找出问题所在,从而提高生产效率和产品质量。    5、环保与安全评估:对于含有有害物质的材料,可以用于检测其含量和分布情况,以评估其对环境和人体健康的影响。这对于环保和安全评估工作具有重要意义。    总的来说,奥林巴斯红外显微镜在材料科学中的应用非常广泛,它不仅可以提供关于材料成分、结构和性能的详细信息,还可以用于质量控制、故障分析和环保评估等工作。这些应用都为材料科学的发展提供了强大的技术支持。
03/13
如何正确操作奥林巴斯数码显微镜以获得清晰的图像?
奥林巴斯数码显微镜是一种高精度的科学仪器,正确操作它以获得清晰的图像需要遵循一定的步骤和注意事项。  操作奥林巴斯数码显微镜以获得清晰的图像,需要遵循以下步骤:   1、准备工作:确保放置在稳定的工作台上,避免震动和移动。检查电源线和数据线是否连接正常。  2、调整光源:打开光源,调整光照强度至适中。过强或过弱的光线都会影响图像质量。  3、选择物镜:根据观察样本的大小和需求,选择合适的物镜。通常从低倍物镜开始,逐渐切换到高倍物镜。  4、粗调焦距:将样本放置在载物台上,使用粗调旋钮调整焦距,使样本大致成像。注意不要触碰到镜头。  5、细调焦距:使用细调旋钮微调焦距,直至观察到清晰的图像。在高倍物镜下,焦距非常敏感,需要缓慢调整。  6、调整光圈和对比度:根据样本的特点,调整光圈大小和对比度,以获得更清晰、层次分明的图像。   7、使用数码摄像头:将数码摄像头与奥林巴斯数码显微镜连接,打开摄像头软件。设置合适的曝光时间、ISO感光度和分辨率等参数。  8、拍摄预览:使用摄像头软件的实时预览功能,观察图像效果。如有需要,可进一步调整焦距、光圈、对比度等参数。  9、拍摄图像:在预览窗口中确认图像清晰后,点击拍摄按钮,记录图像。如有需要,可多次拍摄以获取最佳效果。  10、保存和处理:将拍摄的图像保存为合适的格式,如JPEG、TIFF等。使用图像处理软件进行后期处理,如调整亮度、对比度、色彩平衡等,以提高图像质量。  11、清洁和保养:关闭摄像头,用干净的布擦拭镜头和载物台,避免灰尘和污渍影响图像质量。定期对其进行保养,确保其性能稳定。  总之,操作奥林巴斯数码显微镜时,需要注意光源、物镜、焦距、光圈、对比度等参数的调整,以及数码摄像头的设置和后期处理。通过细心操作和不断实践,可以掌握正确操作方法,获得清晰的图像。
02/21
光学轮廓仪在使用时有哪些需要注意的事项?
光学轮廓仪是一种非接触式的表面形貌测量设备,主要用于测量各种材料表面的微观几何形状。为了确保测量结果的准确性和仪器的正常使用,操作者在使用光学轮廓仪时需要注意以下事项:      1、样品准备:确保样品表面干净、无尘埃、油污等杂质。必要时,可以使用适当的清洗剂对样品进行清洗。同时,确保样品表面平整,无明显的翘曲或弯曲,以免影响测量结果。      2、环境条件:对环境条件有一定要求,应在温度为20±2℃、相对湿度为45%~75%的环境中使用。避免在高温、高湿、强磁场、强振动等环境中使用,以免影响仪器性能。      3、仪器校准:在使用之前,需要对其进行校准。校准过程包括零点校准、跨度校准和直线度校准。校准时应使用标准样块,按照仪器说明书的要求进行操作。      4、参数设置:根据测量需求,设置合适的扫描速度、采样间隔等参数。扫描速度过快可能导致数据采集不准确,过慢则会影响测量效率。采样间隔应根据样品表面粗糙度选择合适的值,以保证测量结果的准确性。      5、测量过程:在测量过程中,要确保样品与光学轮廓仪的测量头保持一定的距离,避免接触。同时,尽量保持样品与测量头的相对位置不变,以免引入误差。      6、数据处理:测量完成后,对数据进行处理和分析。可以使用自带的软件进行数据处理,也可以将数据导出至其他专业软件进行分析。在处理数据时,要注意去除异常值和噪声,以保证结果的准确性。      7、维护保养:定期对其进行维护保养,包括清洁光学系统、检查校准块、检查运动部件等。发现问题及时解决,确保仪器的正常运行。      总之,在使用光学轮廓仪时,要注意样品准备、环境条件、仪器校准、参数设置、测量过程、数据处理、维护保养和操作规范等方面的问题,以确保测量结果的准确性和仪器的正常使用。
查看更多